

Can trained runners effectively attenuate impact accelaeration during repeated highintensity running bouts?

Clansey, A. C., Lake, M. J., Wallace, E. S., Feehally, T., & Hanlon, M. (2016). Can trained runners effectively attenuate impact accelaeration during repeated high-intensity running bouts? *Journal of Applied Biomechanics*, *32*, 261-268. https://doi.org/10.1123/jab.2015-0125

Link to publication record in Ulster University Research Portal

Published in: Journal of Applied Biomechanics

Publication Status: Published (in print/issue): 01/06/2016

DOI: 10.1123/jab.2015-0125

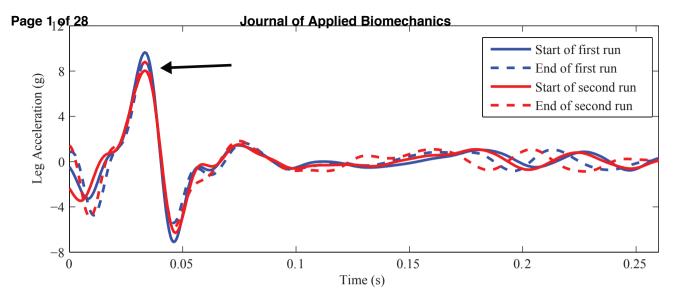
Document Version

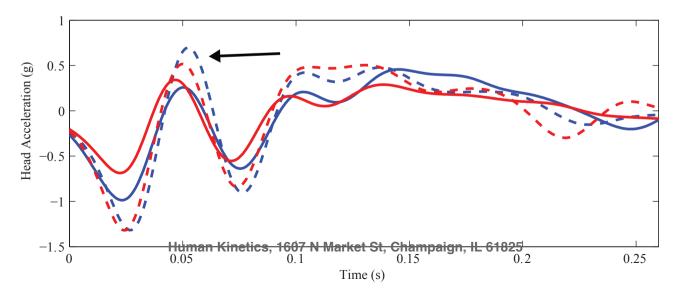
Author Accepted version

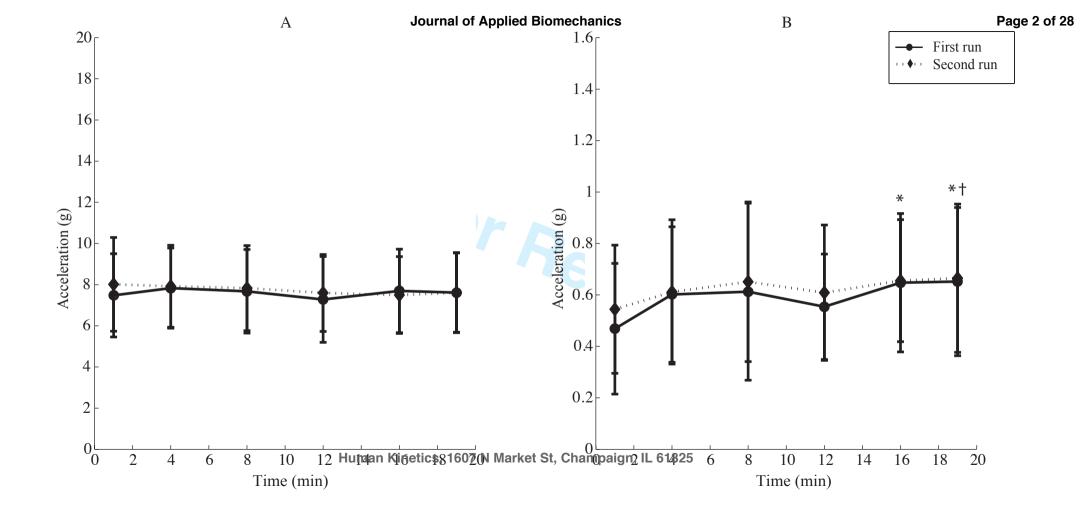
General rights

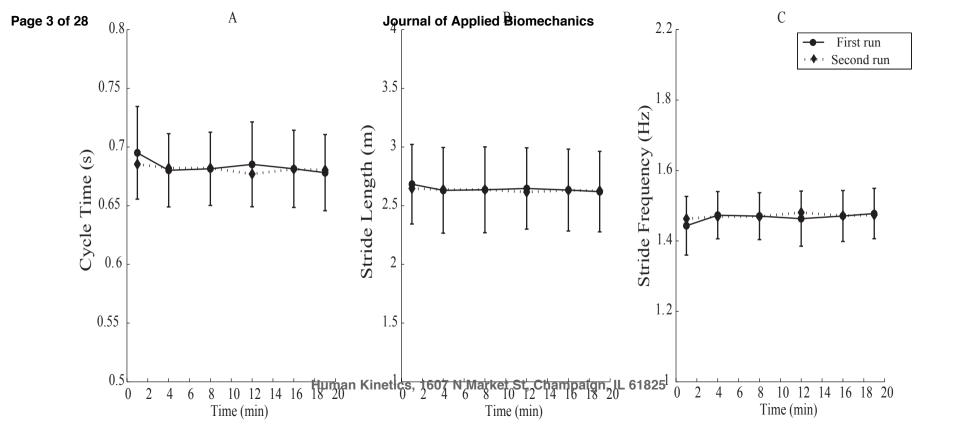
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

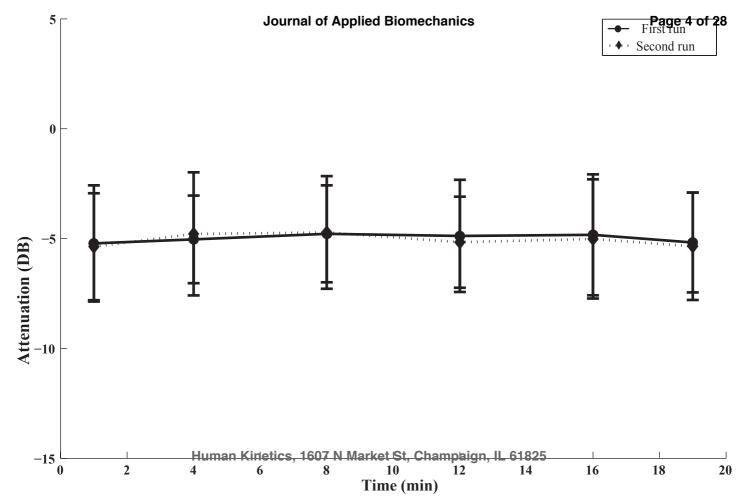
Take down policy


The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.




Can trained runners effectively attenuate impact acceleration during repeated high-intensity running bouts?


Journal:	Journal of Applied Biomechanics
Manuscript ID	JAB.2015-0125.R3
Manuscript Type:	Original Research
Keywords:	biomechanics, endurance, musculoskeletal, gait analysis, bone



1	Can trained runners effectively attenuate impact acceleration during repeated high-
2	intensity running bouts?
3 4 5	Adam C. Clansey ¹ , Mark J. Lake ² , Eric S. Wallace ³ , Tom Feehally ⁴ , Michael Hanlon ⁵
6 7	¹ Department of Mechanical & Materials Engineering, Queen's University, Kingston, ON, Canada
8 9	² Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
10	³ Sport and Exercise Sciences Research Institute, Ulster University, Northern Ireland
11 12	⁴ School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
13 14	⁵ Department of Health, Sport and Exercise Science, Waterford Institute of Technology, Waterford, Ireland
15	wateriord, nerand
16	
17	
18	Funding: This research project was funded by the Department for Education and
19	Learning Northern Ireland.
20	Conflict of Interest Disclosure: No conflict of Interest.
21	Corresponding Author:
22	Adam C Clansey, PhD
23	Department of Mechanical and Materials Engineering
24	Queen's University
25	McLaughlin Hall, Room 215
26	130 Stuart Street
27	Kingston, Ontario, Canada K7L 3N6
28	Email: <u>adam.clansey@me.queensu.ca</u>
29	Telephone No: (+1) 613-533-2578
30	
31 32	McLaughlin Hall, Room 215 130 Stuart Street Kingston, Ontario, Canada K7L 3N6 Email: <u>adam.clansey@me.queensu.ca</u> Telephone No: (+1) 613-533-2578
33	
34	
35	
36	
37	
38	

39 Abstract

40

61

41	The purpose of this study was to investigate the effects of prolonged high intensity
42	running on impact accelerations in trained runners. Thirteen male distance runners
43	completed two 20-minute treadmill runs at speeds corresponding to 95% of onset of
44	blood lactate accumulation. Leg and head accelerations were collected for 20 s every 4 th
45	minute. Rating of perceived exertion (RPE) scores were recorded during the 3 rd and last
46	minute of each run. RPE responses increased (p < .001) from the start (11.8 \pm 0.9,
47	moderate intensity) of the first run to the end (17.7 \pm 1.5; very hard) of the second run.
48	Runners maintained their leg impact acceleration, impact attenuation, stride length and
49	stride frequency characteristics with prolonged run duration. However, a small (0.11-
50	0.14g) but significant increase (p < .001) in head impact accelerations were observed at
51	the end of both first and second runs. It was concluded that trained runners are able to
52	control leg impact accelerations during sustained high-intensity running. Alongside the
53	substantial increases in perceived exertion levels, running mechanics and frequency
54	domain impact attenuation levels remained constant. This suggests that the present
55	trained runners are able to cope from a mechanical perspective despite an increased
56	physiological demand.
57	Keyword: High-intensity, impact acceleration, running, treadmill.
58	
59	
60	Word count: 3606

Human Kinetics, 1607 N Market St, Champaign, IL 61825

62 Introduction

64	It is estimated that a runner covering 20 miles per week will on average collide with
65	the ground over 1.3 million times in a one-year period ¹ . These repetitive high impact
66	loads during running transmit impact shock waves up through the musculoskeletal system
67	^{2,3} . The body is known to act as a low-pass filter, whereby the high, transient acceleration
68	of the lower leg (leg impact acceleration (input)) is severely dampened before it reaches
69	the head (head impact acceleration (output)) ²⁻⁴ . The process of dissipating these impact
70	energies during running is termed impact attenuation, which is a function of the output
71	relative to the input ⁴ . Between the foot and the head these impact energies are attenuated
72	passively by components such as muscle, heel fatpad, bone, cartilage, synovial fluid and
73	other structural components ^{4,5} and actively by eccentric muscular contractions
74	controlling lower limb joint motion during landing ⁴⁻⁶ .
75	
75 76	The associated reduction in neuromuscular functionality with prolonged running ⁷⁻⁹ , has
	The associated reduction in neuromuscular functionality with prolonged running ⁷⁻⁹ , has led researchers to consider that this impairment may decrease the impact absorbing
76	
76 77	led researchers to consider that this impairment may decrease the impact absorbing
76 77 78	led researchers to consider that this impairment may decrease the impact absorbing capacity of the body and therefore lead to a greater risk of overuse injury development or
76 77 78 79	led researchers to consider that this impairment may decrease the impact absorbing capacity of the body and therefore lead to a greater risk of overuse injury development or degenerative disease ¹⁰⁻¹³ . Nevertheless, despite these claims, the influence of sustained
76 77 78 79 80	led researchers to consider that this impairment may decrease the impact absorbing capacity of the body and therefore lead to a greater risk of overuse injury development or degenerative disease ¹⁰⁻¹³ . Nevertheless, despite these claims, the influence of sustained high-intensity effort running on impact accelerations (peak positive axial component) still
76 77 78 79 80 81	led researchers to consider that this impairment may decrease the impact absorbing capacity of the body and therefore lead to a greater risk of overuse injury development or degenerative disease ¹⁰⁻¹³ . Nevertheless, despite these claims, the influence of sustained high-intensity effort running on impact accelerations (peak positive axial component) still appears to be conflicting and unclear. Several studies have reported significant increases

85	Verbitsky, Isakov ¹² who ran active individuals at their anaerobic threshold speed for 30
86	min found significant increases in leg impact accelerations 15 minutes into the run. This
87	increase in leg impact acceleration was also observed in other studies who conducted
88	similar protocols and with comparable subject cohort groups ^{11,14} . In contrast, Mercer,
89	Bates, Dufek, Hreljac ¹⁸ found no changes in leg and head accelerations while running
90	before and after a graded exhaustive treadmill run. Similarly, Abt, Sell, Chu, Lovalekar,
91	Burdett, Lephart ¹⁷ who recruited experienced runners reported both consistent leg and
92	head impact accelerations before and after a 17.8 minute exhaustive treadmill run.
93	Another possible explanation for the discrepancies in results could be related to
94	differences between treadmill and overground running. For instance, individuals are
95	constrained to run at a constant speed during treadmill running and the fluctuations of
96	impact accelerations may be less pronounced than in overground running where speed is
97	self-regulated and more variable.
98	
99	While the previous reports provide an insight into the effects on high-intensity
100	running impact accelerations, little attention has been focused on examining how trained
101	runners modulate impact accelerations during repeated bouts of prolonged high intensity

102 running. The majority of studies that recruited trained runners implemented an

103 exhausting, single bout, short duration run protocol 1,17,18,21 , however, these types of

104 situations are not representative of what runners perform during their weekly training

schedule. Generally, trained runners are known to perform repeated bouts of high

106 intensity running during single training sessions ^{7,22}. Therefore, the purpose of this

107 investigation was to examine the effects of two bouts of high-intensity running on impact

108	acceleration and attenuation. It was hypothesized that leg impact acceleration would
109	increase progressively over the two runs, whereas, head impact acceleration would
110	remain consistent, and be indicative of an improvement in impact attenuation with
111	prolonged running. Given that stride characteristics are known to play an important role
112	in the modulation of impact accelerations during running ^{2,23,24} , the present study also
113	aimed to investigate runners stride characteristic during these repeated bouts of high-
114	intensity running. It was hypothesized that runners would increase their stride length and
115	decrease stride frequency in order to maintain velocity when they were towards the end
116	of the prolonged running bouts.
117	
118	Method
119	
120	Participants
121	
122	Thirteen male trained distance runners (age 35.1 ± 10.2 years, height 1.8 ± 0.1 m,
123	mass 73.1 \pm 11.1 kg, weekly mileage 70 \pm 21 km per week) participated in this study.
124	Each participant signed an informed consent form approved by the University Research
125	Ethics Review Board. All participants were free from musculoskeletal injuries at the time
126	of testing and had no reported cardiorespiratory conditions or problems.
127	
128	Determination of 95% of OLBA
129	

130	A week prior to the high intensity run protocol, participants underwent a standardized
131	incremental lactate threshold running test ²⁵ . This test was used to determine each
132	participant's speed for the high intensity run protocol at 95% of OBLA, which equates to
133	a blood lactate concentration of 3.5 Mm. All participants were familiarized with
134	treadmill running and were instructed not run or train 24 h prior to testing. The test
135	consisted of participants running on a treadmill (T170 DE, HP Cosmed, UK) at a 1%
136	gradient for 3-minute stages. Before and after the test all participants performed a 5-min
137	warm-up and cool-down jog. The test started at a speed that was perceived
138	'comfortable/easy pace' for participants to run. Between each stage a 30-s time period
139	was allocated to allow the collection of blood from each participant's fingertip.
140	Participant blood lactate levels were measured and recorded using a lactate analyser
141	(Lactate Pro; UK). The treadmill speed was increased 1 km·hr ⁻¹ every 3-minute stage.
142	The test was terminated once participants' blood lactate concentration exceeded 4.0 Mm.
143	Each participant's velocity was based on their OBLA of 3.5 Mm ²⁶ . This 95% OBLA
144	threshold marker was chosen based on previous reports that showed reductions in
145	muscular strength after runners completed on average 40 minutes of treadmill running
146	^{27,28} . The 95% OBLA marker was determined by polynomial regression model outlined
147	by Newell, Higgins, Madden, Cruickshank, Einbeck, McMillan, McDonald ²⁵ . The
148	average 95% of OBLA speed was $14.0 \pm 2.4 \text{ km} \cdot \text{hr}^{-1}$.
149	
150	Procedures

A week after the determination of OBLA participants returned to the laboratory for the second time to perform the factoring testing. After this, participants completed two bouts of 20-minute treadmill runs at 95% of their OBLA. Between the first and second 20-minute running bouts participants performed six discontinuous overground running trials at 4.5 m·s⁻¹ over a 15-m runway. This was part of a previous related study ²⁰. The total duration of these trials lasted for 3-5 minutes in duration.

158

Two lightweight (2.8 g) biaxial (± 10g; frequency range of 5-5 kHz) accelerometers 159 160 (Noraxon, Scottsdale, AZ) were attached to participant's distal anteromedial aspect of the tibia and anterior aspect of the forehead before the running 20 . The accelerometer had a 161 162 built in DC filter (5 Hz High-pass filter) that removed the acceleration offset related to 163 the orientation or position. To minimize the influence of angular motion of the shank on 164 the leg acceleration profiles, the accelerometer was placed as close as possible to the 165 ankle joint (i.e. approx. 7cm-10cm above the malleoli). These sites were selected to 166 minimize the effects of soft tissue oscillations during impact. As a precaution to reduce 167 any unwanted skin oscillations, the skin around the accelerometers sites was stretched 168 using adhesive kinesiology tape (Vivomed, UK). At the site of leg (tibia) accelerometer 169 attachment, the skin was shaved using sterilized razors and then cleaned. The axial axis 170 of the leg accelerometer was aligned with the longitudinal axes of the tibia bone. Once 171 the accelerometers were attached, they were securely tightened using self-gripping 172 bandage. In addition, participants wore a headband to further secure the accelerometer to 173 the head. The axial component of both sets of accelerometry data were recorded at 1500 Hz for 20 s and were captured during the first, 4th, 8th, 12th, 16th and last minute of each 174

175 run. Rating of perceived exertion (RPE) scores were measured on a 6-20 point scale and 176 were collected during the third and last minute of each run. RPE is used as a non-invasive 177 physiological valid tool for prescribing exercise intensity ²⁹ and has been previously used 178 to determine if physiological fatigue was likely to have occurred while running at a given 179 running speed ³⁰.

180

181 Data analysis

182

183 The accelerometry data were collected in Qualisys track manager software (Qualisys, 184 Gothenburg, Sweden) and exported into MatLab (R2013a, Mathworks, Natick, MA) for 185 processing and analysis. Stance phases were extracted from the head and leg acceleration 186 profile data and transformed into the frequency domain using a Fast Fourier Transform using methods previously outlined^{4,31}. Before acceleration data were transformed to the 187 188 frequency domain, the mean and linear trends were removed. The length of the data 189 needed to be a power of two for the power spectral density (PSD) so the acceleration data 190 were padded with zeros in order to total 512 data points. Power spectral density (PSD) 191 profiles were generated from frequencies 0 Hz to the Nyquist frequency (F_N) using a 192 square window. The resulting PSD profiles were normalized to 1 Hz frequency bins with 193 power adjustments made to reflect padding of zeros. After binning, the PSD was 194 normalized to the sum of the powers from 0 to F to be equal to the mean squared 195 amplitude of the data in the time domain. Transfer functions (TF) were calculated from 196 the power spectral densities at the head (PSD_{head}) and the leg (PSD_{leg}) using the following 197 formula :

198

$$TF(DB) = 10\log_{10}(\frac{PSD_{head}}{PSD_{leg}})$$

199

where the TF is the gain and attenuation in decibels and the PSD_{head} and PSD_{leg} are the
power spectral densities of the head and leg at each 1 Hz frequency interval.

202

203 The transfer function values at impact frequencies of 10-20 Hz were averaged to obtain a measure of the impact attenuation in the body¹. The reason for selecting this 204 205 frequency portion was due to its association with transient impact phase of the foot contacting the ground 2 . For example, a greater absolute value in the 10-20 Hz range 206 207 indicated a greater impact attenuation. The peak axial accelerations of the head and leg 208 were extracted during the early impact phase of stance and averaged over each 20-s trial 209 (Figure 1). The number of ground contacts analyzed varied between runners depending 210 individual running speed and stride length, but typically there was around 25 contacts in a 211 20-s trial. Stride characteristics were calculated based on the peaks of the leg impact accelerations for each trial ³². Cycle time was the average time between each consecutive 212 213 leg impact acceleration (stride) and stride frequency was calculated as the inverse of this 214 time. Once stride frequency was calculated, stride length was computed from the 215 treadmill velocity and stride frequency.

216

217 Statistical analysis

219	Dependent variables of head and leg impact accelerations (time domain), impact
220	acceleration (frequency domain), stride length; stride frequency, cycle time and RPE
221	scores were tested for normality using Mauchly's test. Statistical tests were performed
222	using SPSS, version 22 (SPSS, Chicago, IL). The results were presented as means ±S.D.
223	A two-way (first and second run) within group, repeated measures ANOVA was used to
224	detect differences across 6 time points for each dependent variable. For the RPE scores,
225	a two-way (first and second run) repeated measures (2 levels) ANOVA was used to
226	compare the start and end time points between runs. A critical value of $p < 0.05$ was
227	assumed for significance. When either a significant interaction or a main effect was
228	observed for a dependent variable, Bonferroni adjusted post hoc analyses were used to
229	determine where the differences rested.
230	
231	Results
232	
233	Runners were able to maintain their leg accelerations throughout each high-intensity
234	run (Figure 2). At the start of the first run, leg impact accelerations were 7.67 (2.1) g and
235	remained constant at 8.03 (2.3) g for the last minute of the run (Figure 2A). Similarly, leg
236	impact accelerations were 7.43 (2.1) g at the first minute of the second run and did not
237	change at 8.04 (2.3) g by the last min of the second run. A significant main effect of run
238	(p < .035) and time $(p < .001)$ in head impact acceleration was observed. In the first run,
239	head impact acceleration increased significantly from the start at 0.47 (0.25) g to the 16^{th}
240	at 0.61 (0.31) g and last minute of the run at 0.65 (0.31) g. Likewise, head impact
241	accelerations also significant increased in the last minute $(0.66 (0.28) \text{ g})$ of the second run

compared to the start of the run (0.55 (0.20) g). It was apparent that there was a general
increased offset in head impact acceleration values in the second run as compared to the
first run.

245

246 RPE responses had a significant run by time interaction (p < .001) whereby, greater 247 changes were observed in the second run as compared to first run (4.6 Δ versus 2.5 Δ). 248 The pairwise comparisons revealed that between the start and end of the first run, RPE 249 responses significantly increased (p < .001) from 11.8 (0.9) to 14.3 (1.2). Similarly, RPE 250 responses progressively increased from 13.1 (1.2) to 17.7 (1.5) (very hard) at the start of 251 the second run compared to the end. In addition, between the end of the first run and the 252 start of the second, runners RPE responses significantly decreased (p = .02). All runners 253 maintained a consistent cycle time (Figure 3A), stride length (Figure 3B) and stride 254 frequency (Figure 3C) with increased run duration. Similarly, no changes in impact 255 attenuation were found across any time point of both runs (Figure 4). Although not 256 reported, the PSD profiles for the head and leg were analyzed but no differences were 257 found.

258

259 **Discussion**

260

The primary purpose of this study was to investigate the effects of high intensity running on both head and leg impact accelerations in trained runners. The prescribed run protocol consisting of two consecutive bouts of 20 minute runs at 95% of OBLA was shown to be

successful in progressively and substantially increasing runners perceived exercise

 plausible that the current protocol elicited a level of fatigue similar to previous protocols that implemented a 95% of OBLA running intensity ^{27,28}. The results of this study indicated that runners were able to effectively maintain their leg accelerations across both prolonged 20-minute runs at 95% of their OBLA. This finding rejects our hypothesis in which we expected greater leg impact accelerations with increased run duration. Contrary to our findings, significant increases in leg impact accelerations were found ^{11,12,14-16}. A possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners completed an exhaustive running protocols ^{17,18}. Whilst these results are in support of the
 indicated that runners were able to effectively maintain their leg accelerations across both prolonged 20-minute runs at 95% of their OBLA. This finding rejects our hypothesis in which we expected greater leg impact accelerations with increased run duration. Contrary to our findings, significant increases in leg impact accelerations were found ^{11,12,14-16}. A possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
prolonged 20-minute runs at 95% of their OBLA. This finding rejects our hypothesis in which we expected greater leg impact accelerations with increased run duration. Contrary to our findings, significant increases in leg impact accelerations were found ^{11,12,14-16} . A possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14} . With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
which we expected greater leg impact accelerations with increased run duration. Contrary to our findings, significant increases in leg impact accelerations were found ^{11,12,14-16} . A possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14} . With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 to our findings, significant increases in leg impact accelerations were found ^{11,12,14-16}. A possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 possible explanation for the conflicting findings may be attributed to the trained status of the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 the runners. In the present study we recruited trained distance runners, whereas the previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 previous studies had healthy participants without an endurance background ^{11,12,14}. With trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 trained distance runners being frequently exposed to prolonged running, it is likely that they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 they have better mechanical coping strategies when placed under an increased physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
 physiological demand as compared to the less experienced non-runner counterpart. In support, others reported consistent leg impact accelerations after experienced runners
278 support, others reported consistent leg impact accelerations after experienced runners
279 completed an exhaustive running protocols 17,18 . Whilst these results are in support of the
present study's, it is recognized that the shorter duration and exhaustive incremental
281 protocol designs may be enough to induce a high level of neuromuscular fatigue that has
been associated with a reduction in the muscles ability to effectively attenuate impact
acceleration during running. Accordingly, it is probable that the incremental short
duration exhaustive protocols may have impaired more of the central mechanisms (such
as heart and lung function) as opposed to the peripheral mechanisms (neuromuscular
286 function and neural transmission), that are responsible for controlling impacts pre-landing
287 during running 33,34 . Evidence has shown that longer duration running protocols 9,35 elicit

288	greater impairments in muscular activation and strength as compared to shorter and high
289	intensity protocols ^{27,28} and these neuromuscular impairments have been associated with
290	central fatigue ⁷ . With this being the case, it may be that the consistent leg impact
291	accelerations are due to the current protocol not eliciting sufficient impairments to the
292	peripheral and central mechanisms that control for landing phase during running.
293	Evidently, given the differences in results between studies, it is acknowledged that
294	numerous factors such as subjects training status, exercise duration, exercise intensity and
295	exercise type, can all play an important role on the outcome of impact acceleration
296	results.
297	
298	Since leg impact accelerations are positively correlated with speed ¹ , another important
299	consideration for the conflicting findings may be related to the experimental designs that
300	controlled speed and those that allowed it to vary. Studies that controlled speed observed
301	subtle changes in leg impact acceleration and running technique with prolonged running
302	^{19,31,36} , whereas, when speed was allowed to vary during running leg impact accelerations
303	changes were clearly larger ³⁷ . Theore, we acknowledge that controlling speed in the
304	present study may have lead to only subtle changes in running mechanics, however we
305	speculate this may not be the case with more severe fatigue levels.
306	

307 Studies have found that regardless of magnitude of input acceleration at the leg
308 during running (un-fatigued state) the output acceleration at the head remains consistent
309 ^{2,23}. The authors believe that this maintenance may be related to the system's goal of
310 wanting to optimize the stability of the head for allowing clear and consistent information

to the vestibular and visual systems ^{38,39}. Although leg impact accelerations remained 311 312 consistent with prolonged high-intensity running, our results showed a 30.5% and 20% 313 increase in head impact acceleration between the first and last minute of the first and 314 second run. While several studies reported no changes in head impact accelerations with high-intensity running ^{1,15-19}, one study did report significant increases in impact 315 accelerations at the sacrum site 20 minutes into a high intensity run ¹¹. The authors of this 316 317 study claimed that the increase in impact accelerations more proximal up the system are 318 related to induced neuromuscular fatigue reducing the musculoskeletal system's ability to 319 effectively dissipate impact energy. Based on this claim, the present result would seem to 320 indicate that the musculoskeletal system has a diminished capacity to attenuate and 321 dissipate the foot strike initiated transient acceleration with increasing fatigue levels, how wer, it was apparent that the frequency components associated with impact phase of 322 323 stance (impact attenuation) were not modified. In support, others reported a similar 324 paradox in that they observed changes in impact accelerations in the time domain but not in the frequency domain¹. Alteragh, it remains unclear in the present study as to why the 325 326 impact attenuation did not change despite the modifications in impact accelerations at the 327 head. We speculate that this paradox in results may be due to the peaks identified in the 328 time domain acceleration data still containing high and low frequency signals that are not 329 attributed to transient impacts after ground contact. Our frequency domain measure of 330 impact attenuation (which remained consistent) is likely to be a more reliable measure of 331 the biomechanical responses to impact in the current protocol. This is because this 332 measure is focused on frequencies associated with impact (10-20 Hz), with the low and 333 high frequency portions of the leg and head acceleration profiles that are not associated

334	with impact are removed from the analysis. Moreover, the current authors realize that the
335	magnitudes of peak accelerations at the head are low in comparison to other previous
336	running studies ^{1,18} . The possible reason for the low magnitudes observed in head
337	accelerations may be attributed to the soft compliance (although not directly measured) of
338	the treadmill surface further assisting with dissipation of impact energy during the stance
339	phase of running. On the other hand, it is likely that the observed lower head
340	accelerations in the present study may be due to DC filter removing the acceleration
341	positional/orientation offset during running. In addition, another plausible explanation
342	may be related to how the accelerometer was attached to the head. For instance, it could
343	be that frequency response between the accelerometer and head/skull was poor as
344	compared to others who used a bite bar accelerometer with better mechanical coupling
345	(and thus a higher resonance frequency) ⁴⁰ .
346	

347 It has been well established that stride characteristics and active joint motion during 348 the impact phase play an important role in the modulation of leg impact accelerations during running ^{2,4,6,31}. For example, research has shown significantly greater leg impact 349 350 accelerations with a 20% increase in stride length from runners preferred ⁴. In the present 351 study, runners were able to maintain their stride characteristics irrespective of increased 352 run duration and high physiological demands (increased RPE responses). Similarly, others found no changes in stride length after a fatiguing run³¹. Evidently, it is suspected 353 354 that this lack of change in stride characteristics with prolonged run duration may be 355 accountable for the control of leg impact accelerations. These findings rejected our 356 hypothesis of an increase in stride length and a decrease in stride frequency with

prolonged high-intensity running. Based on previous reports ^{14,16}, we believed that 357 358 runners would be forced (during treadmill running) to adopt a strategy to conserve energy 359 through which they would decrease their stride frequency and increase stride length in 360 order to maintain running velocity and subsequently this change would result in an 361 increase in leg impact accelerations with fatigue. 362 363 With the present study showing consistent stride characteristics throughout each run it 364 is plausible that the trained distance runner again may have more effective mechanical 365 coping strategies with prolonged running at a high physiological stress as compared to not so well trained counterparts ^{11,12,14,16}. It's possible that inexperienced runners who 366

undertake prolonged, intense, physiologically demanding runs may not be able to 368 maintain their running mechanics and impact attenuation during those runs and perhaps

369 place themselves at an greater risk of injury due to them not coping from a mechanical

370 perspective. Moreover, considering the important associations with the manipulation of

stride characteristics and energy costs during running 2 , a recent study by Vernillo, 371

Savoldelli, Zignoli, Skafidas, Fornasiero, La Torre, Bortolan, Pellegrini, Schena⁴¹ 372

373 showed that despite a significant increase (3.9%) in step frequency after runners

374 completed a ultramarathon, only a significant increase in energy costs was observed

375 during downhill running and not in the level and uphill running. In contrast, others

376 reported significant increases in energy cost with a 4.2% increase in stride frequency after

a marathon ⁴². Considering these discrepancies, it is apparent that there is still ambiguity 377

378 within the literature on gait responses to fatigue on subsequent energy demands during

379 running.

380

381	One limitation of this study was that lower-extremity joint kinematics or kinetics
382	were not collected during the treadmill runs. Given that joint mechanics at initial contact
383	are considered to play an important role in the modification of impact accelerations
384	during running ^{1,6,43} , it would have been beneficial to have assessed those parameters in
385	the present study. Another limitation of the current study is that no quantitative measures
386	of the fatigue were collected. More objective measures to quantify fatigue levels such as
387	EMG, isokinetic strength, twitch contractile stimulation, or oxygen consumption
388	measurements would have offered greater insight into the type and levels of fatigue that
389	were induced by the treadmill runs. Finally, in the majority of laboratory-based running
390	fatiguing studies, including the present study, runners are usually forced to run at a
391	controlled speed set by the treadmill, as opposed to real-world training and racing
392	scenarios in which runners typically regulate their speeds based on sensory inputs
393	outlined by the 'central governor model' ⁴⁴ . Nevertheless, although the present findings
394	provide an insight into the coping strategies for impact acceleration during high intensity
395	treadmill running, there is still a need for future studies to investigate impact
396	accelerations during real-world outdoor training and racing environments - by the use of
397	portable outdoor inertial sensor systems ³⁷ . Findings from such studies would not only
398	help with the understanding of runners impact acceleration patterns but may provide a
399	greater insight into the mechanisms which cause impact-related injuries in runners.
400	
401	In conclusion, this present study found that trained runners are able to effectively

402 control leg impact accelerations and impact attenuation during sustained high intensity

403	runnin	g. It was apparent that despite the dramatic increases in perceived exertion levels,
404	runnin	g mechanics such as stride length and frequency remained consistent. This
405	indicat	tes that trained runners are able to cope mechanically whilst being under a high
406	physio	logical demand.
407		
408	Acknowledgements	
409		
410	Author	rs would like to thank the Department for Education and Learning Northern Ireland
411	for the	ir funding support of this study. Also special thanks to Alison Gruber from Indiana
412	Unive	rsity Bloomington for her guidance on the frequency domain data processing part
413	of the	study.
414		
415		References
416		
417	1.	Derrick TR, Dereu D, McLean SP. Impacts and kinematic adjustments during an
418		exhaustive run. Medicine & Science in Sports & Exercise. 2002;34(6):998-1002.
419	2.	Hamill J, Derrick TR, Holt KG. Shock attenuation and stride frequency during
420		running. Human Movement Science. 1995;14(1):45-60.
421	3.	Shorten MR, Winslow DS. Spectral analysis of impact shock during running.
422		International Journal of Sport Biomechanics. 1992;8(Journal Article):288-288.
423	4.	Derrick TR, Hamill J, Caldwell GE. Energy absorption of impacts during running
424		at various stride lengths. Medicine & Science in Sports & Exercise.
425		1998;30(1):128-135.

426	5.	LaFortune M, Lake MJ, Hennig EM. Differential shock transmission response of
427		the human body to impact severity and lower limb posture. Journal of
428		Biomechanics. 1996;29(12):1531-1537.
429	6.	Derrick TR. The effects of knee contact angle on impact forces and accelerations.
430		Medicine & Science in Sports & Exercise. 2004;36(5):832-837.
431	7.	Millet GY, Lepers R. Alterations of neuromuscular function after prolonged
432		running, cycling and skiing exercises. Sports Medicine. 2004;34(2):105-116.
433	8.	Martin V, Kerhervé H, Messonnier LA, et al. Central and peripheral contributions
434		to neuromuscular fatigue induced by a 24-h treadmill run. Journal of Applied
435		Physiology. 2010;108(5):1224-1233.
436	9.	Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G. Alterations
437		of neuromuscular function after an ultramarathon. Journal of Applied Physiology.
438		2002;92(2):486-492.
439	10.	Nordin M, Frankel VH. Biomechanics of bone. Basic biomechanics of the
440		musculoskeletal system. 1989:3–29.
441	11.	Voloshin AS, Mizrahi J, Verbitsky O, Isakov E. Dynamic loading on the human
442		musculoskeletal system effect of fatigue. Clinical Biomechanics. 1998;13(7):515-
443		520.
444	12.	Mizrahi J, Verbitsky O, Isakov E. Shock accelerations and attenuation in downhill
445		and level running. Clinical Biomechanics. 2000;15(1):15-20.
446	13.	Mizrahi J, Verbitsky O, Isakov E. Fatigue-induced changes in decline running.
447		Clinical Biomechanics. 2001;16(3):207-212.

448	14.	Verbitsky O, Mizrahi J, Voloshin A, Treiger J, Isakov E. Shock transmission and
449		fatigue in human running. Journal of Applied Biomechanics. 1998;14:300-311.
450	15.	Mizrahi J, Voloshin A, Russek D, Verbitsky O, Isakov E. The influence of fatigue
451		on EMG and impact acceleration in running. Basic and Applied Myology.
452		1997;7(2):119–126.
453	16.	Mizrahi J, Verbitsky O, Isakov E, Daily D. Effect of fatigue on leg kinematics and
454		impact acceleration in long distance running. Human Movement Science.
455		2000;19(2):139-151.
456	17.	Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running
457		kinematics and shock absorption do not change after brief exhaustive running.
458		The Journal of Strength & Conditioning Research. 2011;25(6):1479-1485.
459	18.	Mercer J, Bates BT, Dufek JS, Hreljac A. Characteristics of shock attenuation
460		during fatigued running. Journal of Sports Sciences. 2003;21(11):911-919.
461	19.	García-Pérez JA, Pérez-Soriano P, Llana Belloch S, Lucas-Cuevas ÁG, Sánchez-
462		Zuriaga D. Effects of treadmill running and fatigue on impact acceleration in
463		distance running. Sports Biomechanics. 2014;13(3):259-266.
464	20.	Clansey AC, Hanlon M, Wallace ES, Lake MJ. Effects of fatigue on running
465		mechanics associated with tibial Stress fracture risk. Medicine & Science in
466		Sports & Exercise. 2012;44(10):1917-1923.
467	21.	Dutto DJ, Smith GA. Changes in spring-mass characteristics during treadmill
468		running to exhaustion. Medicine & Science in Sports & Exercise.
469		2002;34(8):1324-1331.

470	22.	Collins MH, Pearsall DJ, Zavorsky GS, Bateni H, Turcotte RA, Montgomery DL.
471		Acute effects of intense interval training on running mechanics. Journal of Sports
472		Sciences. 2001;18(2):83-90.
473	23.	Mercer JA, Vance J, Hreljac A, Hamill J. Relationship between shock attenuation
474		and stride length during running at different velocities. European Journal of
475		Applied Physiology. 2002;87(4):403-408.
476	24.	Clarke T, Cooper L, Hamill C, Clark D. The effect of varied stride rate upon
477		shank deceleration in running. Journal of sports sciences. 1985;3(1):41-49.
478	25.	Newell J, Higgins D, Madden N, et al. Software for calculating blood lactate
479		endurance markers. Journal of sports sciences. 2007;25(12):1403-1409.
480	26.	Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the
481		4-mmol/l lactate threshold. International Journal of Sports Medicine.
482		1985;6(3):117.
483	27.	Oliveira AdSC, Caputo F, Gonçalves M, Denadai BS. Heavy-intensity aerobic
484		exercise affects the isokinetic torque and functional but not conventional
485		hamstrings:quadriceps ratios. Journal of Electromyography & Kinesiology.
486		2009;19(6):1079-1084.
487	28.	Denadai BS, Greco CC, Tufik S, De Mello MT. Effects of high intensity running
488		to fatigue on isokinetic muscular strength in endurance athletes. Isokinetics and
489		Exercise Science. 2007;15(4):281-285.
490	29.	Steed J, Gaesser GA, Weltman A. Rating of perceived exertion and blood lactate
491		concentration during submaximal running. Medicine & Science in Sports &
492		Exercise. 1994;26(6):797-803.

493	30.	Moran KA, Clarke M, Reilly F, Wallace ES, Brabazon D, Marshall B. Does
494		endurance fatigue increase the risk of injury when performing drop jumps? The
495		Journal of Strength & Conditioning Research. 2009;23(5):1448-1455.
496	31.	Mercer JA, Devita P, Derrick TR, Bates BT. Individual effects of stride length
497		and frequency on shock attenuation during running. Medicine and Science in
498		Sports and Exercise. 2003;35(2):307-313.
499	32.	Mercer J, Dufek JS, Mangus BC, Rubley MD, Bhanot K, Aldridge JM. A
500		description of shock attenuation for children running. Journal of Athletic
501		Training. 2010;45(3):259-264.
502	33.	Boyer KA, Nigg BM. Muscle activity in the leg is tuned in response to impact
503		force characteristics. Journal of Biomechanics. 2004;37(10):1583-1588.
504	34.	Bobbert MF, Yeadon MR, Nigg BM. Mechanical analysis of the landing phase in
505		heel-toe running. Journal of biomechanics. 1992;25(3):223-234.
506	35.	Millett GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing to knee
507		extensor strength loss after prolonged running exercise. (Abstract). Journal of
508		Orthopaedic & Sports Physical Therapy. 2003;33(5):287-287.
509	36.	Williams KR, Snow R, Agruss C. Changes in Distance Running Kinematics with
510		Fatigue. International Journal of Sport Biomechanics. 1991;7(2):138-162.
511	37.	Giandolini M, Pavailler S, Samozino P, Morin J-B, Horvais N. Foot strike pattern
512		and impact continuous measurements during a trail running race: proof of concept
513		in a world-class athlete. Footwear Science. 2015;7(2):127-137.
514	38.	Owen B, Lee D. Establishing a frame of reference for action. <i>Motor Development</i>
515		in Children: Aspects of Coordination and Control. 1986:287-308.

516	39.	Pozzo T, Berthoz A, Lefort L. Head stabilization during various locomotor tasks
517		in humans. I. Normal subjects. Experimental Brain Research. 1990;82(1):97-106.
518	40.	Cavanagh PR. Biomechanics of Distance Running. ERIC; 1990.
519	41.	Vernillo G, Savoldelli A, Zignoli A, et al. Energy cost and kinematics of level,
520		uphill and downhill running: fatigue-induced changes after a mountain
521		ultramarathon. Journal of sports sciences. 2015(ahead-of-print):1-8.
522	42.	Kyröläinen H, Pullinen T, Candau R, Avela J, Huttunen P, Komi PV. Effects of
523		marathon running on running economy and kinematics. European Journal of
524		Applied Physiology. 2000;82(4):297-304.
525	43.	McKenna M, Riches P. A comparison of sprinting kinematics on two types of
526		treadmill and over - ground. Scandinavian journal of medicine & science in
527		sports. 2007;17(6):649-655.
528	44.	Noakes TD. The central governor model of exercise regulation applied to the
529		marathon. Sports medicine. 2007;37(4-5):374-377.
530 531	Figur	e Captions
532	Figure	a 1 – A representative subject acceleration profiles of the leg and head during
533	runnin	g at the start and end of each run. Arrows indicate the impact acceleration peak
534	during	gearly stance.
535		
536	Figure	2 - Leg (A) and head (B) impact acceleration values (mean and SD error bars)
537	during	both 20-minute runs. Solid line = First run, Dashed line = Second run. *Denotes
538	post h	oc differences (p < .05) compared to the time point at the start of first run and \dagger

- 539 denotes post hoc differences (p < .05) compared to the time point at the start of second
- 540 run
- 541
- 542 Figure 3 - Cycle time (A), stride length (B) and stride frequency (C) values (mean and
- 543 SD error bars) during both runs. Solid line = First run, Dashed line = Second run.
- 544
- 545 Figure 4 – Impact attenuation values (mean and SD error bars) during both runs. Solid .k .nd run.
- 546 line = First run, Dashed line = Second run.
- 547